
A Data-Driven Analysis of Informatively Hard
Concepts in Introductory Programming

R. Paul Wiegand
Institute for Simulation & Training

University of Central Florida
Orlando, FL, USA

wiegand@ist.ucf.edu

Anthony Bucci
119 Amory St.

Cambridge, MA, USA
anthony@bucci.onl

Amruth N. Kumar
Ramapo College of New

Jersey
Mahwah, NJ, USA

amruth@ramapo.edu

Jennifer L. Albert
The Citadel

171 Moultrie Street
Charleston, SC, USA

jalbert@citadel.edu

Alessio Gaspar
University of South Florida

4202 E. Fowler Avenue
Tampa, FL, USA

alessio@usf.edu

ABSTRACT
What are the concepts in introductory programming that
are easy/hard for students? We propose to use Dimension
Extraction algorithm (DECA) inspired by coevolution and
co-optimization theory to answer this question. We propose
and use the metrics of informatively easy/hard concepts to
identify programming concepts that are solved correctly by
the most “dominated student” versus solved incorrectly by
the most “dominant student”. As a proof of concept, we ap-
plied DECA to analyze the data collected by software tutors
called problets used by introductory programming students
in Spring 2014. We present the results, i.e., informatively
easy/hard concepts on a dozen different topics covered in
a typical introductory programming course. It is hoped
that these results will inform programming instructors on
the concepts they should (de)/emphasize in class. They will
also contribute towards creating a concept inventory for in-
troductory programming.

CCS Concepts
•Social and professional topics → Computer science
education; •Applied computing → Education;

Keywords
introductory programming education; dimension extraction;
multiobjective optimization, performance analysis; problets

1. INTRODUCTION
Attrition in the introductory programming course is leg-

endary. Students find programming to be hard. What are
the concepts in introductory programming that are hard/easy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 02 - 05, 2016, Memphis, TN, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844629

for students? Knowing this would help educators better tar-
get the hard concepts, provide focused support to students,
and possibly improve retention in the course.

Typically, a study of hard programming concepts would
be conducted in the context of creating a concept inventory.
However, no formal concept inventory exists for program-
ming concepts. Delphi process has been proposed as one
mechanism for identifying hard concepts [6]. While this pro-
cess relies on the expertise and consensus of educators, the
results still need to be empirically validated.

In this paper, we propose a data-driven approach for iden-
tifying easy and hard programming concepts. In addition
to easy and hard concepts as traditionally understood, we
propose the notions of informatively easy and informatively
hard concepts. As proof of concept, we apply our approach
to data collected by software tutors for programming, called
problets (problets.org) in Spring 2014. We present the re-
sults and discuss their significance.

The data-driven approach we propose is based on dimen-
sion extraction coevolutionary algorithm (DECA) and in-
spired by coevolution and co-optimization theory [2]. The al-
gorithm identifies structural relationships amongst students
and problems by constructing a geometry of problems and
students that illustrates how student performance can be
distinguished in fundamentally different ways. While the
algorithm has been used in technical applications such as
analyzing game playing strategies, it has seen very little ap-
plication in educational domains such as identifying difficult
programming concepts in computer science education.

2. BACKGROUND

2.1 Hard Concepts in Programming
Defining and measuring the hardness of concepts is impor-

tant for scaffolding learning according to Vygotsky’s Zone of
Proximal Development (ZPD) theory [15]. One of very few
attempts to identify hard concepts in programming [6] re-
cently identified a list of topics using Delphi process and
ranked them according to importance and difficulty (see Ta-
ble 1 for the subset used in this study). A second study
[7] surveyed instructors of CS1 and CS2 on how much time
they spent on various topics and correlated that importance

with student performance. However, neither study delved
into individual concepts within each topic.

Usually, researchers enumerate concepts and assess their
level of hardness when creating a concept inventory on a sub-
ject. In Computer Science, concept inventories have been
attempted on various subjects (e.g., digital logic, operating
systems, algorithms) [13] but none has been completed on
introductory programming. Two recent attempts have both
been preliminary, one identifying topics [6] and another iden-
tifying some high-level concepts [14]. To create a concept
inventory for introductory programming, assessment items
must be created on a continuum of specific concepts within
each topic that students do not understand. We address
this issue of granularity [12] by proposing to identify low-
level concepts on most of the topics typically covered in in-
troductory programming, particularly those concepts whose
hardness can be measured using data-driven analysis.

2.2 Co-optimization and Coevolution
The challenge of defining hard and easy problems arises

in the study of co-optimization problems and coevolutionary
algorithms [11]. Co-optimization problems are distinguished
from optimization problems by the presence of two or more
types of entity (e.g., student or problem) that might vary
and can interact with one another with a measurable out-
come or score. In the present context we have computer
science students and a variety of computer programming
problems we might present to those students; any student
can attempt–interact with–any of the problems, and they re-
ceive a score. Therefore, the real-world domain of students
solving problems resembles a co-optimization problem, and
we believe the tools and techniques developed in the study
of those algorithms can be fruitfully applied to this domain.

One foundational line of work in co-optimization and co-
evolutionary algorithms concerns dimension extraction meth-
ods [3, 4, 2, 5]. Abstractly, this work hypothesizes that
the information gleaned from interactions, for instance the
scores of students solving problems, can be decomposed into
a vector-space-like coordinate system. Within a coordinate
system, there are potentially multiple axes or dimensions,
consisting of a linearly ordered subset of the set of all enti-
ties. Entities further along a given axis are “no worse than”
those preceding it. Across two different axes, entities are
incomparable to one another, in the sense that an entity
on one axis will be better in some ways, but worse in other
ways, than an entity on another axis. This method has been
used for a number of purposes, including automatically iden-
tifying key conceptual tactics in the game of Nim [5].

We will apply a minor variant of the dimension-extraction
algorithm presented in [4] to analyze data about popula-
tions of students. A “student axis“ will be a subset of the
students, which might be thought of as a“learner type”. Stu-
dents further along the axis they are in tend to be better on
the collection of problems they attempted than the students
preceding them on the axis. This analysis will help us dis-
tinguish student performance, a key insight of this paper.

3. METHODS

3.1 Problets
The software tutors used in this study, problets (prob-

lets.org), cover topics typically studied in introductory pro-
gramming courses. Each problet addresses one topic, but

covers several concepts (see Table 1). The concepts ad-
dress different skills: evaluating expressions, tracing pro-
grams (e.g., predicting the output), debugging programs and
identifying the state of variables in a program. An advantage
of using data collected by problets is that problets have been
used by third-party educators in their introductory courses
for over a decade and have been continually and extensively
evaluated (e.g., [9, 10]).

Problets are adaptive, i.e., they tailor the sequence of
problems to the learning needs of the student. Initially,
each problet presents the student with one test problem per
concept. Thereafter, it only presents practice problems on
concepts on which the student incorrectly solved the test
problem. Since the purpose of this study was to identify
easy/hard concepts, we used only the data from the initial
test administered by each problet — this data represented a
snapshot of what the students knew/did not know before
using the problet but after attending one or more lectures
on the topic in class.

Table (1) lists the topics on which problets are available,
and the number of concepts covered by each problet. It lists
the number of students who solved all the test problems
in each problet, and their schools in Spring 2014. Partici-
pants were students of introductory programming from high
schools, community colleges and four-year colleges, who usu-
ally used the problets for after-class assignments after the
topic had been covered in class.

Topic Concepts Schools Students
Arithmetic 25 29 982
Relational 24 20 582
Logical 21 16 572
Assignment 19 15 599
Selection 12 21 774
Switch 12 12 221
while 9 18 523
for 10 18 700
do-while 15 13 175
Advanced Loops 13 8 161
Functions/Bugs 9 7 282
Functions/Tracing 10 8 449
Array 14 14 221
Class 18 4 125

Table 1: Concepts per topic and number of
schools/students who used each problet in Spring
2014

3.2 Dimension Extraction
Dimension Extraction Coevolutionary Algorithm

(DECA) [4] is a coevolutionary algorithm that uses a di-
mension extraction method, as outlined in Sect. 2.2, at its
core. While the coevolutionary algorithm searches through
candidate solutions and tests, for our purposes here we will
be using its internal dimension-extraction algorithm to an-
alyze students and problems.

In a problem analysis, the students are the candidates and
the problems are the tests. The result is a coordinate sys-
tem of problems, where each dimension orders a subset of
the problems. Problems further along a dimension are not
passed by at least the same students than those lower on the

dimension. Problems on different dimensions are those on
which students performed incomparably. Intuitively, each
dimension corresponds to a different concept that differenti-
ated student performance and the problems that are highest
on each dimension are the problems the most students did
not solve.

Dually, in a student analysis, the problems are the candi-
dates and the students are the tests. The result is a coor-
dinate system of students this time, where each dimension
orders a subset of students in terms of the number of prob-
lems they solved correctly. Students on different dimensions
perform incomparably on the tests. In this sense, each di-
mension corresponds to a different pattern in which students
performed on problems or intuitively speaking a “type” of
learner. The students furthest along an axis solve the most
problems, and in that sense are the best-performing repre-
sentatives of each type.

Application of these analyses to the performance of stu-
dents on problets potentially provides several sources of in-
sight. First, the number of dimensions extracted from prob-
lem analysis gives an implicit measure of the number of dis-
tinct concepts that appear in the problem set; that is, the
number of different ways that problems distinguish student
performance. Likewise, the number of dimensions extracted
from student analysis gives an implicit measure of the num-
ber of distinct types of learner that appear in the student
set, or in other words the number of different ways students
can be grouped in terms of differences in performance.

Additionally, such analyses allow us to highlight the im-
portance of how informative different problems are. It is
simplistic to assign a “difficulty” measure to problems based
purely on how many students solve or do not solve a prob-
lem. For instance, if Garry Kasparov were to play a class-
room of intermediate chess students, he would likely beat
them all, and it would be impossible to determine which
students were among the best in the class. Likewise, if
someone who never played chess was used as the opponent,
this person would likely lose to everyone, and we would be
equally uninformed about the relative performance of stu-
dents. Similarly, a problem that most students miss (or get
right) may not be an informative problem because it might
not provide distinctions to help educators know where stu-
dents are having problems.

Instead, we want challenging problems that distinguish
student performance as much as possible. As educators,
we should be interested in constructing problems that lie
in a zone of proximal development [15] — problems of vary-
ing levels of difficulty that are on the boundary of where
students perform in fundamentally different ways and, con-
sequently, where true performance can best be judged. To
begin to address this shortfall, we introduce two new terms
grounded in our dimension extraction analysis, informatively
hard and informatively easy.

For each dimension extracted in a student analysis, i.e.
type of learner, we identify the most dominant student as
the one who solved the most problems among students on
that dimension. We count each problem not passed by such
students, for all of the most dominant students. Likewise, we
identify the most dominated student as the one who solved
the fewest problems among students on their dimension. We
count each problem solved correctly by such students, for
all of the most dominated students. Then, a problem is
informatively hard if it is most often solved incorrectly

by the most dominant students. Similarly, a problem is
informatively easy if it is most often solved correctly by
the most dominated students.

These two measures do not coincide with their traditional
counterparts. For example, it is possible for a problem to
be missed by everyone but the strongest students, for an
otherwise challenging problem to be solved by the weakest
students. When such things happen, it is likely that student
behavior is confounding a linear expectation of performance,
and is therefore interesting. Measures such as informatively
easy and hard highlight and preserve the idea that different
students understand different concepts in different ways. An
informatively easy concept may be understood in the context
of Zone of Proximal Development as the concept nearest to
some other concept, whereas an informatively hard concept
is farthest from any other concept.

By contrast, we define a problem as (traditionally) hard
if it is solved incorrectly by most students and as easy if it
is solved correctly by most students.

As we will see in the next section, rarely is an infor-
matively easy concept also easy, or an informatively hard
concept also hard, although our intuitive notions of mono-
tonicity of hardness would dictate this. Recall that informa-
tively hard concepts are determined by the most dominant
students vis-a-vis the general population, and informatively
easy problems are determined by the most dominated stu-
dents. The more interesting, although rare, cases are when
an informatively easy concept is hard and an informatively
hard concept is easy. The former corresponds to when it
is easy for the general population to make mistakes while
solving a problem. The latter corresponds to when it is easy
for the general population to guess the answer.

3.3 Consistency with the Data
We will begin to demonstrate the utility of our approach

in the next section; however, an important preliminary ques-
tion is whether or not our method for identifying informa-
tively hard and informatively easy remains relatively con-
sistent across a given data set. Our discussion below de-
scribes our analysis for identifying informatively hard prob-
lems; however, the same analysis was also conducted for
informatively easy problems.

To address the question of consistency, we performed the
following experiment. For each topic, we split the data so
that students were assigned to one of two groups indepen-
dently and uniformly at random. We extracted dimensions
on both groups and used the results to identify informa-
tively hard problems. Since there can be multiple problems
that are equally informatively hard, when the two extrac-
tions produced an overlap in the set of identified problems,
we considered that split to have been “consistent”. This was
repeated 50 times, where each splitting was independent.

Traditional proportions or goodness of fit tests are not
possible in this case because the algorithm can return mul-
tiple results for a given split. Instead, we first computed per-
trial probabilities combinatorially, noting that given that
one split produces k informatively hard problems while an-
other produces j informatively hard problems over n such
problems, the probability of random subsets overlapping is

given by: 1− (n−k)! (n−j)!
(n−k−j)! n!

.

For each topic, we averaged these probabilities across the
50 trials, which were then used to compute theoretical val-
ues for how many trials should have produced matches in

the 50 trials, assuming a random process. After that, we
used a traditional one-tailed difference of two proportions
statistical test. The results were significant (α = 0.05) for
both informatively hard and informatively easy calculations,
for all but two topics. The Functions/Bugs topic did not
produce significant results, and the while topic results were
significant for only informatively easy calculations. Overall,
this suggests that the method is fairly consistent; however,
when many potential informative cases are identified, con-
sistency issues can arise. However, in such scenarios, the
algorithm is not necessarily reporting random information.
Since many of the problems are equally discriminating, the
specific data set being analyzed simply becomes the biggest
factor in identifying informative problems.

4. RESULTS: EASY AND HARD CONCEPTS
Students used problets in sufficient numbers on 13 topics

in Spring 2014 for our analysis to be meaningful, as listed
in table 1 (We combined the results of the two functions
tutors). For each of these topics, we list below the informa-
tively easy and informatively hard concepts as determined
by the Dimension Extraction algorithm, along with easy and
hard concepts as traditionally understood.
Arithmetic Expressions:
Easy: Evaluating expressions such as 8−−5, which involve
subtracting a negative number; • evaluating fully parenthe-
sized expressions, such as (14/((6−3)+2)), where the order
of evaluation of operators is fully dictated by parentheses.
Hard: Evaluating expressions such as 12%5 + 5%12.0, con-
taining remainder operator along with real operands.
Fully parenthesized expressions can be evaluated without
knowledge of precedence and associativity rules. Remainder
operator and data types are both novel concepts first taught
in programming classes.
Informatively Easy: Evaluating expressions involving
divide-by-zero error: e.g., 9/3/0.
Informatively Hard: Evaluating expressions featuring in-
teger division: e.g., 5/3 + 3 ∗ 5
Integer division is also a novel concept, specific to program-
ming. Dividing by zero is informatively easy since it is em-
phasized as a problem in math.
Relational Expressions:
Easy: Evaluating expressions where the two operands are
the same: e.g., 5 >= 5
Hard: Evaluating expressions featuring chained relational
operators: e.g., 3 > 7 >= −1
Chaining of relational operators results in errors in Java, and
yields surprising results in C++. Both are a clear departure
from math, and are novel to programming.
Informatively Easy: Evaluating expressions that involve
both arithmetic and relational operators, both being at the
lower level of precedence in their respective groups (e.g., +
in arithmetic, != in relational), such as 3−−5 != 3 + 5
Informatively Hard: Evaluating expressions containing
both arithmetic and relational operators, the two being at
different levels of precedence at their respective groups, e.g.,
−3 ∗ −4 != 6 ∗ 2
Expressions involving both arithmetic and relational oper-
ators, but no parentheses, seem to be both informatively
easy and hard at the same time. The difference could be
that students already understand the concept of subtract-
ing a negative number, but not so much multiplying two
negative numbers.

Assignment Expressions:
Easy: Evaluating pre-fix assignments: e.g., 5 + ++var1

Hard: Evaluating pre- and post-fix assignments: e.g., var2
= ++var1 and var2 = var1++

Both pre- and post-fix assignment operators are inherently
confusing to students. That prefix increment also features
in the easy expression leads us to speculate that students
guess the answer to this problem more often than not.
Informatively Easy: Evaluating coercion during assign-
ment: e.g., double var1 = 3 + 5

Informatively Hard: Evaluating postfix decrement oper-
ator: e.g., var2 = var1--)
By the time students learn assignment expressions, it is
likely they are already familiar with the concept of coercion.
Logical Expressions:
Easy: Evaluating fully parenthesized expressions, e.g., (true
&& (true && (true || false))) that do not involve short-
circuit evaluation or need for precedence rules; and • expres-
sions evaluated left to right with easy evaluation semantics:
e.g., true && false && true.
Hard: Evaluating C++ expressions wherein numerical val-
ues are used as boolean operands: e.g., 3 ∗ 0&&3 + 0
Again, these support the hypothesis that difficulty is linked
to novel concepts, specific to programming.
Informatively Easy: The same as the fully parenthesized
easy expression described before.
Informatively Hard: The same as the non-parenthesized easy
expression described before — even though this is easy, the
best students still make mistakes when evaluating it.
Selection Statements:
Easy: Identifying the output of nested if statements.
Hard: Identifying the output of an if-else statement with
a condition that evaluates to true.
The hard problem was designed to be the simplest on if-

else statements. Lack of familiarity with the user inter-
face may explain why students solved it incorrectly in larger
numbers — selection being the first tutor and this problem
being the first problem in the tutor. It is surprising that
students found nested if statements to be easy, suggesting
that the bifurcation of control flow is what is complicated
about selection statements, not conditional execution.
Informatively Easy: Predicting the output of multiple
back-to-back if statements.
Informatively Hard: Tracing the output of an if-else

statement whose condition evaluates to false; • an if state-
ment whose condition evaluates to true; • nested if state-
ments.
Once again, user interface may be to blame for why students
found the first two concepts informatively hard.
switch Statement:
Easy: Tracing the output of a switch statement whose con-
dition matches no case; • a switch statement in which the
body of a case statement is empty.
Hard: Identifying the output of a switch statement with a
missing break statement.
Both easy concepts entail code not generating any output,
and may be traced with only a cursory glance.
Informatively Easy: Specifying the output of nested switch

statements; • identifying as syntax error when the case

value is not an integer expression.
Informatively Hard: Predicting the output of multiple
back-to-back switch statements.
Both informatively easy concepts come as a surprise, since

the correct answer to neither is easily guessable, and cur-
sory glance is not sufficient to arrive at the correct answer.
This is an example where data-driven analysis contradicts
intuition.
while Loop:
Easy: Predicting the output of a loop that iterates only
once; • a loop that never iterates because its condition eval-
uates to false on the first try.
Hard: Identifying the output of multiple back-to-back loops,
wherein the behavior of the second loop depends on the ex-
ecution of the first loop.
The two easy concepts require students to trace not so much
the repeated execution of the loop as the independent one-
time evaluation of the condition and the loop body.
Informatively Easy: Identifying the output of nested loops,
wherein execution of the inside loop is independent of that
of the outside loop.
Informatively Hard: Predicting the output of • nested
loops, with the inner loop’s behavior dependent on that of
the outer loop; • loop that never iterates because its con-
dition fails immediately; • loop whose condition variable is
updated before it is printed inside the loop; • loop with sen-
tinel value changing on each iteration; • code that appears
and is executed after the loop exits.
Informatively hard concepts involve behavior that deviates
from that of a simple loop. The informatively easy concept
of independent nested loops might suggest that nesting is
not so much a problem as unexpected behavior of code.
for Loop:
Easy: Predicting the output of a zero-iteration loop, which
results in no output for the code.
Hard: Tracing the output of two back-to-back loops, where
second loop’s counter depends on the first loop.
Informatively Easy: Identifying the output of a loop which
iterates exactly once.
Informatively Hard: Identifying the output of nested de-
pendent loops, wherein the inner loop’s counter depends on
the outer loop’s execution.
All the above findings concur with those on while loop.
do-while Loop:
Easy: Specifying the output of a loop that iterates only
once.
Hard: Identifying the output of a C++ loop whose condi-
tion is an assignment statement.
The empirically hard problem has been a long-known source
of error for novice programmers [8].
Informatively Easy: Tracing the output of a loop whose
condition is a disjunctive logical expression.
Informatively Hard: Predicting the output of a loop whose
condition is a conjunctive logical expression.
Presumably, disjunctive expressions such as status == ’s’

|| status == ’f’) are easier to evaluate than conjunctive
expressions such as limit >= 0 && limit <= 100.
Advanced loop concepts:
Easy: Identifying that modifying the value against which
the condition variable is compared results in an infinite loop..
Hard: Predicting the output of a loop containing continue

statement.
Surprisingly, identifying an infinite loop turned out to be
easy, possibly because of the emphasis placed on it in class.
Informatively Easy: Predicting the output of a loop con-
taining continue statement.
Informatively Hard: Identifying the bug when a break

statement appears outside any loop or switch statement.
The informatively easy concept is also hard. This suggests
that it is easy to make mistakes when tracing loops with
continue statement, even when one understands the under-
lying concepts. The informatively hard concept corresponds
to a pathological use of the language.
Functions:
Easy: Tracing the output when a function is called as part
of an expression; • identifying as a bug when the caller tries
to use the value returned by a function with void return
type.
Hard: Predicting the output when a variable is passed by
value to a function; Identifying as a bug when • return state-
ment is missing in the definition of a non-void function; •
data type of the value in the return statement is incompat-
ible with the return type of the function.
In accord with our previous findings, easy concepts corre-
spond to scenarios where functions are treated like math
functions, and hard concepts deal with novel programming-
specific constructs. Please note that parameter passing by
reference was not included in problets.
Informatively Easy: Tracing the behavior of a function
that has multiple conditional return statements; • Identi-
fying bugs due to type incompatibility between formal and
actual parameters; • Identifying bugs due to type incompat-
ibility between returned value and return type of a function.
Informatively Hard: Not identifying as a bug when two
variables with the same name appear in two different func-
tions; • Identifying the C++ bug wherein a function is called
before it is defined or prototyped.
Informatively hard concepts deal with advanced concepts of
scope and extent . Informatively easy concepts should both
be familiar to students by the time functions are introduced.
Arrays:
Easy: Specifying the contents of a fully initialized array; •
predicting the behavior of referencing a random element.
Hard: Identifying the contents of an array declared with
incomplete initialization.
The hard concept is among the pathological cases often
skipped in lectures, but must be known to students nev-
ertheless. Problets are designed to cover these concepts.
Informatively Easy: Predicting the behavior when an el-
ement of an array is referenced before it is initialized.
Informatively Hard: Identifying type mismatch when an
array is passed as parameter to a function.
Although students are familiar with parameter passing and
type mismatch by now, applying these concepts to arrays
turns out to still challenge them.
Access in classes:
Easy: Identifying the behavior when a public object mem-
ber is accessed by a member function of the class.
Hard: Tracing the behavior of the default constructor when
an object is created.
Constructors are hard because they are the first example of
call-back functions that students study. (While main is also
a call-back function, it is usually not introduced as one.)
Informatively Easy: Identifying mismatching numbers of
actual / formal parameters when calling member functions.
Informatively Hard: Tracing the behavior of construc-
tors, with or without parameters, when an object is created.
While students have had additional opportunities to learn
about parameter-passing, call-back constructors are novel.

5. DISCUSSION
Informatively easy or hard concepts overlapped with tra-

ditional easy or hard concepts only occasionally. This sup-
ports our claim that the use of DECA to identify them have
the potential to bring new insights to educators.

Our results show that the novelty of a concept signifi-
cantly influences whether the concept is easy or hard, e.g.,
integer division and remainder operator are novel and there-
fore, hard. This is consistent with previous research [7].
As a corollary, what is informatively easy or hard changes
throughout a semester, as exposure to and familiarity with
specific concepts increases, e.g., data type compatibility. An-
other recurring theme is that students found it easier when
they could relate programming concepts to math concepts
they already knew. So, instructors may want to highlight the
relationship between concepts in programming and math.

We found that some concepts that are intuitively thought
to be hard turned out to be easy (e.g., independent nested
while loops) and vice versa (e.g., conjunctive logical con-
dition in a do-while loop). Clearly, there is a need for
data-driven analysis to confirm or refute intuitive notions
in Computer Science education and inform educators.

We expect the easy, hard, informatively easy, and informa-
tively hard concepts enumerated in the previous section to
contribute to a concept inventory for introductory program-
ming. Since these concepts are supported by data-driven
analysis, their inclusion in the concept inventory will better
reflect the needs of students.

Our results apply to C++, Java and C#, although some
concepts identified as easy/hard are specific to C++. The
concepts we considered relate to code analysis (program
tracing, debugging and expression evaluation), but not syn-
thesis (code design, writing) or evaluation (e.g., refactoring)
skills in Bloom’s taxonomy [1].

A confounding factor of this study is that the set of con-
cepts identified for each topic were meant to be representa-
tive but not exhaustive or exclusive. Still, the approach we
used for data analysis would be applicable to an exhaustive
set of concepts, should one be collected; and the results of
this study, while not a concept inventory in its entirety, will
contribute to one when it is created.

In future, we will also examine the consistency of the dom-
inance relationships produced by the algorithm. Addition-
ally, we will use DECA to identify concepts and redundan-
cies in the problem data. Further, we will examine how
the structure uncovered by these methods might relate to
“learning trajectories”. Overall, this tool has great potential
to help instructors design informative problem sets that will
better elucidate student performance differences.

6. ACKNOWLEDGMENTS
This material is based in part upon work supported by

the National Science Foundation under awards #1504634,
#1502564, and #1504634.

7. REFERENCES
[1] L.W. Anderson, D.R. Krathwohl, P.W. Airasian, K.A.

Cruikshank, R.E Mayer, P.R Pintrich, J. Raths, and
M.C. Wittrock. A taxonomy for learning, teaching,
and assessing: A revision of BloomâĂŹs Taxonomy of
Educational Objectives. New York: Longman, 2001.

[2] A. Bucci. Emergent Geometric Organization and
Informative Dimensions in Coevolutionary Algorithms.
PhD thesis, Brandeis University, Boston, MA, 2007.

[3] A. Bucci, J.B. Pollack, and E.D. de Jong. Automated
extraction of problem structure. In Proceedings of the
7th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’04, pages 501–512, 2004.

[4] E.D. de Jong and A. Bucci. DECA: Dimension
extracting coevolutionary algorithm. In Proceedings of
the 8th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’06, pages
313–320, New York, NY, USA, 2006. ACM.

[5] E.D. de Jong and A. Bucci. Objective set compression:
Test-based problems and multi-objective optimization.
In Multi-Objective Problem Solving from Nature: From
Concepts to Applications. Springer, 2008.

[6] K. Goldman, P. Gross, C. Heeren, G. Herman,
L. Kaczmarczyk, M.C. Loui, and C. Zilles. Identifying
important and difficult concepts in introductory
computing courses using a delphi process. ACM
SIGCSE Bulletin, 40(1):256–260, 2008.

[7] M. Hertz and S.M. Ford. Investigating factors of
student learning in introductory courses. In Proceeding
of the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, pages 195–200, New
York, NY, USA, 2013. ACM.

[8] A. Koenig. C Traps and Pitfalls. Addison-Wesley
Professional, 1989.

[9] A.N. Kumar. The effectiveness of visualization for
learning expression evaluation. In Proceedings of the
46th ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 362–367, New York,
NY, USA, 2015. ACM.

[10] A.N. Kumar. Solving code-tracing problems and its
effect on code-writing skills pertaining to program
semantics. In Proceedings of the 20th Annual
Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2015, Vilnius,
Lithuania, July 6-8, 2015, pages 314–319, 2015.

[11] E. Popovici, A. Bucci, R.P. Wiegand, and E.D. de
Jong. Coevolutionary principles. In Handbook of
Natural Computing, pages 987–1033. Springer, 2012.

[12] L. Porter, C. Taylor, and K.C. Webb. Leveraging open
source principles for flexible concept inventory
development. In Proceedings of the 2014 conference on
Innovation & technology in computer science
education, pages 243–248. ACM, 2014.

[13] C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B.
Lee, and M. Clancy. Computer science concept
inventories: past and future. Computer Science
Education, 24(4):253–276, 2014.

[14] A.E. Tew and M. Guzdial. Developing a validated
assessment of fundamental cs1 concepts. In
Proceedings of the 41st ACM technical symposium on
Computer science education, pages 97–101. ACM,
2010.

[15] L.S. Vygotski. The Collected Works of LS Vygotsky.
Springer, 1987.

